import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing import image
from tensorflow.keras.callbacks import EarlyStopping
import warnings
warnings.filterwarnings('ignore')
batch_size = 16
image_size = (150, 150)
train_datagen = ImageDataGenerator(
rescale=1./255,
zoom_range=0.2,
rotation_range=15,
width_shift_range=0.05,
height_shift_range=0.05)
train_generator = train_datagen.flow_from_directory(
'photos',
target_size=image_size,
batch_size=batch_size,
class_mode='binary')
Found 697 images belonging to 2 classes.
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
MaxPooling2D(2, 2),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D(2, 2),
Flatten(),
Dense(512, activation='relu'),
Dropout(0.3),
Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
early_stopping = EarlyStopping(monitor='val_loss', patience=3, verbose=1, restore_best_weights=True)
model.fit(
train_generator,
epochs=50,
callbacks=[early_stopping],
verbose = 0)
<keras.src.callbacks.history.History at 0x106414710>
def classify_pet(img_path):
img = image.load_img(img_path, target_size=(150, 150))
plt.imshow(img)
plt.axis('off')
plt.show()
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
prediction = model.predict(img_array)
if prediction < 0.5:
print("It's a cat!")
else:
print("It's a dog!")
classify_pet('predict/dog1.jpg')
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 79ms/step It's a dog!
classify_pet('predict/cat1.jpg')
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 17ms/step It's a cat!